

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code : SM-1(15A01303)

Course & Branch: B.Tech - CE

Year & Sem: II-B.Tech & I-Sem

Regulation: R15

<u>UNIT – 4</u>

DEFLECTION OF BEAMS

- 1. Derive the relation between slope, deflection and radius of curvature.
- 2. Determine: (i) slope at the left support, (ii) deflection under the load and (iii) maximum deflection of a simply supported beam of length 6 m, which is carrying a point load of 5 KN at a distance of 2 m from the left end. Take $E = 2 \times 1055 \text{ N/mm2}$ and $I = 1 \times 108 \text{ mm}^4$.
- 3. A beam of length 8 m is simply supported at its ends and carries two point loads of 36 KN and 46 KN at a distance of 1.5 m and 4 m from the left support. Find: (i) deflection under each load. (ii) Maximum deflection and (iii) The point at which maximum deflection occurs, given E = 2 x 105 N/mm2 and I = 85 x 106 mm4. Use Macaulay's method.
- 4. A cantilever of length 4 m carries a uniformly distributed load 3 kN/m over a length of 1.5 m from the free end and a point load of 2 KN at the free end. Find the slope and deflection at the free end if $E = 2.1 \times 105 \text{ N/mm2}$ and $I = 6.667 \times 107 \text{ mm4}$.
- 5. Find the slope and deflection at the free end of the cantilever shown in figure. Take $EI = 1 \times 1010$ km².

6. Determine the deflections at points C, D and E in the beam shown in the figure. Take E=200KN/mm2 and $I=60 \times 106$ mm⁴.

Name of the Subject

- 7. Determine the slope and deflection of a simply supported beam carrying a uniformly distributed load by Mohr's Theorem.
- 8. Find the expression for the slope and deflection of a cantilever of length L, which carries a uniformly distributed load over a length "a" from the fixed end by Moment area method starting from fundamentals.
- 9. Write the expressions for maximum slope and deflection of a cantilever beam with a point load at free end.
- 10. Explain the following terms
- a) Double integration method.
- b) The elastic line of a beam.
- c) Mohr's theorem
- d) Moment area method
- e) Macaulay's method

	SIDDHARTH GRO Siddharth Nagar	UP OF INSTITUTIONS , Narayanavanam Road – :	:: PUTTUR 517583						
OUESTION BANK (OBJECTIVE)									
Subject with Co	de : SM-1(15A01303)		Course & Branch: B.Tech -						
CE Year & Sem: II-B. Tech & I-Sem			Regulation: R13						
		<u>UNIT–4</u>							
	DEFLE	ECTION OF BEAMS							
1) Distance of maxim	mum deflection from th	e center in a S.S.Beam with	th 'W' not at the c	enter	will be				
a) $[2(L^2-b^2)/3]^{0.5}$	b) $[(L^2-b^2)/3]^{0.5}$	c) $[(3L^2-b^2)/3]^{0.5}$	d) None	[]				
2) Maximum slope	in a cantilever beam wit	th a moment M at the free	end will be	[]				
a) 3ML/EI b) 2M	/IL/EI c) ML/EI	d) None							
3) Maximum deflect	tion in a cantilever bear	n with a moment M at the	free end will be	[]				
a) $3M^{2}L/2EI$ b) $2M$	$M^2L/2EI$ c) $M_2L/2EI$	d) None							
4) Which bracket is	used in Macaulay's Me	ethod of slope and deflection	on	[]				
a) Parentheses ()	b) squ	are brackets []							
c) braces { } d) None									
5) Difference in slop	pes between two points	A and B by the moment an	rea method is give	n by[]				
a) Area of BMD bet	ween A and B/2EI	b) Area of BMD	between A and B/	'3EI					
c) Area of BMD bet	ween A and B/EI	d) None							
6) Difference in def	lections between two po	pints A and B by the mome	ent area method is	given	by[]				
a) (Area of BMD be	etween A and B) . XB/2	EI b) (Area of BMD	between A and B) . XE	3 /3EI				
c) (Area of BMD be	etween A and B) . XB /I	EI d) None							
7) In the strain energy	gy method of slope and	deflection, load is applied		[]				
a) Gradually	b) Suddenly	c) With an impact	d) None						
8) A prop is used to	cause			[]				
a) Less deflection	b) More deflection	c) No change in deflection	on d) None						
9) Props can be used	d in			[]				
a) S.S.Beam b) Ca	antilever beam c) S.S	beam as well as cantileve	er d) None						
10) Deflection due t	o shear is significant in			[]				
a) Long beams	b) Short beams	c) Long as well as sho	t beams d) No	one					
11) Macaulay's met	hod is more convenient	for beams carrying		[1				
a) Single concentrat	ed load b) UDL	c) Multi-loads d)	None	L					
12) Slope is found b	y moment area method	by using		[1				
a) First moment of t	he area	b) Second moment of the	e area	-	-				
c) Third moment of	the area	d) None							
13) Deflection is found by moment area method by using					1				
a) First moment of t	he area	b) Second moment of the	e area	L					
c) Third moment of	the area	d) None							
Name of the Subject	t	,			Page 1				
manie of the Subject	ι				raye i				

QUESTION BANK	2016					
14) Props are used to decrease [a) Slope b) Deflection c) Slope as well as deflection d) None]					
15) Deflection due to shear force as compared to bending moment will be [a) Equal b) Less c) More d) None 16) D flection due to the base of the ba]					
16) Deflection under a concentrated load not at the center (distance a from left support and from right hand support) will be [distance b					
a) WL ³ /48E1 b) 5WL ³ /384E1 c) Wa ² b ² /3E1 where a = L-b (d) None 17) Macaulay's method is more convenient for beams carrying []					
a) Multi concentrated loads b) Multi number of UDL c) Multi-concentrated and multi UDL loads d) None						
18) A beam is designed on the basis of[a) Maximum deflectionb) Minimum deflectionc) Maximum sloped) None	J					
19) A beam is designed on the basis of[a) Maximum bending momentb) Minimum shear forcec) Maximum bending moment as well as for maximum shear forced) None]					
20) The second moment of a circular area about the diameter is given by (D is the diameter).[]					
a) $\frac{\pi D^*}{4}$ b) $\frac{\pi D^*}{16}$ c) $\frac{\pi D^*}{32}$ d) $\frac{\pi D^*}{64}$ 21) Moment of resistance of a beam should be	1					
(a) Greater than the bending moment (b) Less than the bending moment]					
(c) Two times the bending moment (d) None						
22) Variation of bending strain in a beam has [
(a) Parabolic variation (b) Linear variation (c) Cubical variation (d) None						
23) 1. Strain energy is the []					
 a) energy stored in a body when strained within elastic limits b) energy stored in a body when strained upto the breaking of a specimen c) maximum strain energy which can be stored in a body d) proof resilience per unit volume of a material 						
24) A vertical column has two moments of inertia (i.e. Ixx and Iyy). The column will tend in the direction of the	to buckle]					
a) axis of loadb) perpendicular to the axis of loadc) maximum moment of inertiab) perpendicular to the axis of loadd) minimum moment of inertia						
25) The neutral axis of the cross-section a beam is that axis at which the bending stress is [
a) zero b) minimum c) maximum d) infinity						

Name of the Subject

QUESTION BANK 2016 26) Euler's formula holds good only for ſ 1 d)weak columns a) short columns b) long columns c) both short and long columns 27) The object of caulking in a riveted joint is to make the joint ſ 1 a) free from corrosion. b) stronger in tension c) free from stresses d) leak-proof 28) A steel bar of 5 mm is heated from 15° C to 40° C and it is free to expand. The bar Will induce c) tensile stress d)compressive stress a) no stress b) shear stress 29) A body is subjected to a tensile stress of 1200 MPa on one plane and another tensile stress of 600 MPa on a plane at right angles to the former. It is also subjected to a shear stress of 400 MPa on the same planes. The maximum normal stress will be 1 a) 400 MPa b) 500 MPa c) 900 MPa d) 1400 MPa 30) Two shafts 'A' and 'B' transmit the same power. The speed of shaft 'A' is 250 r.p.m. and that of shaft 'B' is 300 r.p.m. The shaft 'B' has the greater diameter. 1 b) False c) not correct d) none of them a) True 31) The stress induced in a body, when suddenly loaded, is ______ the stress induced when the same load is applied gradually. ſ 1 d)four times a) equal to b)bone-half c) twice 32) Maximum deflection in a S.S.Beam with 'W' not at the center will be Γ 1 (a) Wb $(L2 - b2)1.5/3\sqrt{3}EI$ (b) Wb (L2 –b2)1.5 $/6\sqrt{3}$ EI (c) Wb $(L2 - b2)1.5/9\sqrt{3}EI$ (d) None 33) Deflection under the load in a S.S.Beam with 'W' not at the center will be ſ 1 (a) 4Wa2b2/3EIL(b) 2Wa2b2/3EIL (c) Wa2b2/3EIL (d) None 34)Difference in slopes between two points A and B by the moment area method is given by 1 (a) Area of BMD between A and B/2EI (b) Area of BMD between A and B/3EI (c) Area of BMD between A and B/EI (d) None 35) Difference in deflections between two points A and B by the moment area method is given by (a) (Area of BMD between A and B) . XB/2EI (b) (Area of BMD between A and B) . XB /3EI (c) (Area of BMD between A and B). XB/EI (d) None

Name of the Subject

QUES	QUESTION BANK 2016				
36) Which one method is the best for finding slope and deflection					
(a) Double integration method (b) Macaulay's method					
(c) Strain energy method (d) None					
37) Slope at a point in a beam is the					
(a) Vertical displacement (b) Angular displacement (c) Horizontal disp	olacement (d) No	ne		
38) Deflection at a point in a beam is the					
(a) Vertical displacement (b) Angular displacement					
(c) Horizontal displacement (d) None					
39) Identify the differential equation for finding slope and deflection	[]		
(a) EI $d2y/dx2 = -M$ (b) EI $d2y/dx2 = +M$					
(c) EI $d2y/dx2 = \pm M$ (d) None					
40) Maximum deflection in a S.S. beam with W at centre will be					
(a) WL3/36EI (b) WL3/24EI (c) WL3/48EI (d) None					